Using spatially explicit models to characterize foraging performance in heterogeneous landscapes.
نویسنده
چکیده
The success of most foragers is constrained by limits to their sensory perception, memory, and locomotion. However, a general and quantitative understanding of how these constraints affect foraging benefits, and the trade-offs they imply for foraging strategies, is difficult to achieve. This article develops foraging performance statistics to assess constraints and define trade-offs for foragers using biased random walk behaviors, a widespread class of foraging strategies that includes area-restricted searches, kineses, and taxes. The statistics are expected payoff and expected travel time and assess two components of foraging performance: how effectively foragers distinguish between resource-poor and resource-rich parts of their environments and how quickly foragers in poor parts of the environment locate resource concentrations. These statistics provide a link between mechanistic models of individuals' movement and functional responses, population-level models of forager distributions in space and time, and foraging theory predictions of optimal forager distributions and criteria for abandoning resource patches. Application of the analysis to area-restricted search in coccinellid beetles suggests that the most essential aspect of these predators's foraging strategy is the "turning threshold," the prey density at which ladybirds switch from slow to rapid turning. This threshold effectively determines whether a forager exploits or abandons a resource concentration. Foraging is most effective when the threshold is tuned to match physiological or energetic requirements. These performance statistics also help anticipate and interpret the dynamics of complex spatially and temporally varying forager-resource systems.
منابع مشابه
The Importance of Distance to Resources in the Spatial Modelling of Bat Foraging Habitat
Many bats are threatened by habitat loss, but opportunities to manage their habitats are now increasing. Success of management depends greatly on the capacity to determine where and how interventions should take place, so models predicting how animals use landscapes are important to plan them. Bats are quite distinctive in the way they use space for foraging because (i) most are colonial centra...
متن کاملGeneration of Temporally and Spatially Heterogeneous Landscapes for Models of Population Dynamics
There is an increased interest in the use of spatial explicit modelling techniques in ecological research. One of the strength of this technique is the possibility to explicitly study the effect of environmental heterogeneity on the dynamics of populations or whole communities. Most of these studies focused on aspects of spatial heterogeneity, and studies focusing on environmental change employ...
متن کاملGraph theory as a proxy for spatially explicit population models in conservation planning.
Spatially explicit population models (SEPMs) are often considered the best way to predict and manage species distributions in spatially heterogeneous landscapes. However, they are computationally intensive and require extensive knowledge of species' biology and behavior, limiting their application in many cases. An alternative to SEPMs is graph theory, which has minimal data requirements and ef...
متن کاملSpatially Explicit Population Models: Current Forms and Future Uses
Spatially explicit population models are becoming increasingly useful tools for population ecologists, conservation biologists, and land managers. Models are spatially explicit when they combine a population simulator with a landscape map that describes the spatial distribution of landscape features. With this map, the locations of habitat patches, individuals, and other items of interest are e...
متن کاملSpatial and temporal heterogeneity explain disease dynamics in a spatially explicit network model.
There is an increasing recognition that individual-level spatial and temporal heterogeneity may play an important role in metapopulation dynamics and persistence. In particular, the patterns of contact within and between aggregates (e.g., demes) at different spatial and temporal scales may reveal important mechanisms governing metapopulation dynamics. Using 7 years of data on the interaction be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American naturalist
دوره 151 2 شماره
صفحات -
تاریخ انتشار 1998